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In order to demonstrate the system capability a dc 
measurement was made on the cadmium resonance 
line with the source placed between the pole pieces of 
a 2-kG Alnico permanent magnet. A hole was bored 
through the magnet that permitted longitudinal field 
observations. The slope of the line profile, normalized 
as in Table II, is 2.1. The combination of steep slope, 
and pen recorder output to average over residual noise, 
gave an easily observed 2% modulation when the 
quarter-wave plate was manually rotated. Again, 
opposite polarities were indicated on the opposite line 
wings. The limitation in accuracy here was a modulation 
of equivalent magnitude in the absence of the magnet, 
resulting from slight image displacements when the 
quarter-wave plate was rotated, which was subtracted 
out for the field measurement. 

INTRODUCTION 

T T is still an unsolved question how magnetic fields 
-*• can arise in the earth and stars. 

Permanent magnetic fields to explain earth or stellar 
magnetism must be excluded because of the high 
temperatures involved. Thermoelectric effects have 
been considered for the earth but are certainly in stars 
completely insufficient to give anything comparable 
with the observation. On the other hand, it is a well-
known fact1 that the time for the Ohmic dissipation 
of a stellar magnetic field is of the order of 1011 yr, 
assuming a uniform star possessing a magnetic field 
being dipole-like outside the star. As a consequence of 
this long time scale, the origin of the stellar magnetic 
field must be seeked at the birth of the star or at an 
even earlier time. 

On the other hand, it is very likely that turbulent 
convection within a star will eventually destroy a 
magnetic field in a much shorter time than 1011 yr. If 

* Supported in part by the National Aeronautics and Space 
Administration. 

1 W. M. Elsaesser, Phys. Rev., 69, 106 (1946). 

CONCLUSION 

The Zeeman effect technique has been successfully 
applied to measuring transient plasma magnetic fields 
within rather large uncertainty limits. It has been 
established that a nearly completely diamagnetic 
plasma is produced in the Scylla theta pinch device. 
The basic limitation on the method is the scarcity of 
spectral lines at wavelengths above 2000 A which have 
sufficiently high excitation potentials to be emitted 
from the hot central region. 
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this is the case, some kind of regenerative mechanism is 
necessary to explain stellar magnetic fields. 

The only reasonable answer to this problem seems to 
be the hydromagnetic dynamo.2 Different models for 
such dynamos have been proposed but no final conclu
sion has been reached. For an account of these efforts, 
together with the references, see for instance Cowling.3 

1. FORMULATION OF THE PROBLEM 

We start with the well-known equations of magneto-
fluid dynamics.4 

1. Navier-Stokes equation: 

d\ 1 1 
r-(v-grad)v= — grad^ HXcurlH 

dt p 4:wp 
V 1 f 

+-V 2 v+-( r+k)grad divv+-. (1.1) 
P P P 

2 J. Larmor, Brit. Assoc. Advance Sci. Rept. 1919, 159 (1919). 
3 T . G. Cowling, Magnetohydrodynamics (Interscience Pub

lishers, Inc., New York, 1957). 
4 For instance, L. D. Landau and E. M. Lifshitz, Electrody

namics of Continuous Media (Pergamon Press, Inc., New York, 
1960), p. 213 ff. 
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The dynamo theories to explain earth and stellar magnetism are confronted with gerat theoretical dif
ficulties. For this reason it has not been possible to reach a final conclusion on the feasibility of self-sustaining 
hydromagnetic dynamos. In order to solve these difficulties, it is suggested to test the dynamo theory 
experimentally under laboratory conditions. I t is proposed to put a liquid conductor into a container of a 
rapidly rotating ultracentrifuge. To "drive" the dynamo, forceful fluid motions must be induced in the liquid 
conductor. This can be done either by externally applied forces, for instance by propellers, or by thermal 
convection. By assuming the validity of similarity laws it is possible to show that conditions presumably 
present in stellar-size dynamos can be simulated under laboratory conditions. 
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2. Generalized Ohm' s l a w : 

<9H c2 

— = c u r l ( v X H ) + V2H. (1.2) 
dt 4x0-

3. The energy equation: 

fds \ 
pTl —hv-grad^ ] 

\dt ) 

dVi c2 

= &ik—+div(X g r a d r ) + (curlH)2+£. (1.3) 
dXk \6TT2(7 

In (1.3) ay,, is the viscous stress tensor: 

/dVi dvk 2 dve\ dve 

(Tik=v[ 1 Sik— J + f 5 i * — . (1.3a) 
\dxjc dXi 3 dxeJ dxe 

Summation is carried out over dummy indices. 
4. The equation of continuity: 

dp/dt+diy(p\) = 0. (1.4) 

5. The divergence equation for the magnetic field: 

d ivH=0 . (1.5) 

6. The equation of state: 

p=p(p,n (i.6) 
These equations must be supplemented by the boundary 
conditions on the surface of a star and of the earth's 
core, respectively. 

In Eqs. (1.1)—(1.6) are: v, fluid velocity; H, magnetic 
field; p, fluid density; p, pressure; TJ, f, the two dynam
ical viscosity coefficients; f, external force density; c, 
electrical conductivity; X, heat conductivity; T, 
absolute temperature; s, entropy per unit mass; q, 
heat-source (sink) density, c, velocity of light. The 
system of Eqs. (1.1)—(1.6) forms a complete set of 
equations for magnetofluid dynamics. 

For a steady-state dynamo we have to put everywhere 
in (1.1)-(1.4) d/dt=0. If d/dt>0, then the dynamo 
builds up; if d/dt<0, it decays. The equations can be 
simplified for an incompressible fluid. If we assume, in 
addition, that the heat conductivity X is constant, we 
obtain as the simplified set of equations 

dv 1 1 
h (v grad)v= — gracty HXcurlH 

dt p 4wp 

+ »V2v+-, (1.7) 

aH c2 

—=curl(vXH)+ V2H, (1.8) 
dt 47TO-

(dT \ /dVi dvAdVi 
PCv[ — + v g r a d r W — + — J—+vV 2 T 

\dt / \dxk dXi/dXk 

c2 

+ (curlH)»+g, (1.9) 

(v.gradP) = 0, (1.10) 

d ivH=0, (1.11) 

P=P(T). (1.12) 

For the energy equation, the following relation has been 
used: 

Tds=cpdT; (1.13) 

v is the kinematic viscosity. 
The force density / for the earth or a star is given by 

the gravitational Coriolis and centrifugal force (GS 
vector of rotation): 

f / p = g o + 2 v X & + [ & X r ] X & . (1.14) 

The heat sources and heat sinks are determined by q. 
The heat sources in a star are determined by thermo
nuclear energy release. In the earth a possible heat 
source is the decay of radioactive material. Release of 
gravitational energy by still-progressing liquifaction 
of the core may be another source. The heat sinks are 
determined by the energy loss through radiation on the 
surface of the star and of the earth, respectively. 

For the earth and the stars the fluid motion is 
presumably thermal convection; the dynamo is, thus, 
driven by heat sources. In a laboratory experiment, 
however, it is also possible to drive the dynamo by ex
ternal forces. This can be done by pressure- or viscous-
shear-flow-induced motion. Examples of pressure-in
duced fluid motions are those caused by pistons or 
propellers. 

Viscous-shear-flow-induced motion occurs, for in
stance, in a viscous fluid enclosed between two coaxial 
cylinders possessing a differential rotation. 

An alternative to thermal convection is of experi
mental advantage. Thermal convection of a magnitude 
required for the experiment can be accomplished only 
by large thermal energy release. 

For the earth or a star the foregoing set of equations 
must be solved for given heat source distributions and 
boundary conditions. 

The equations are nonlinear in v and H. The problem 
is, therefore, connected with great mathematical diffi
culties and it has not been possible to find a solution. 
The question whether a hydromagnetic dynamo is pos
sible or not is, therefore, still open. To obtain some 
answer in spite of these difficulties, a "restricted'' 
dynamo problem5-8 has been treated. In the arestricted , , 

dynamo problem, only Eq. (1.8) is considered. After 
putting d/dt=0, this equation is 

curl(vXH) = (c2/47rcr) curl curlH. (1.15) 
6 W. M. Elsaesser, Phys. Rev. 69, 106 (1946); 70, 202 (1946); 

72,821 (1947); 79, 183 (1950). 
6 E . C. Bullard, Proc. Roy. Soc. (London) A197, 433 (1950), 

and together with H. Gellman, Phil. Trans. Roy. Soc. (London) 
247, 213 (1954). 

7 E. N. Parker, University of Utah Reports on Earth's Mag
netism and Magnetohydrodynamics, No. 7 (1954). 

8 G. Backus, Ann. Phys. (N. Y.) 4, 372 (1958). 

file:///dxjc
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Equation (1.15)—for a given velocity field v—rep
resents an eigenvalue problem for the vector eigenfunc-
tion H. The eigenvalue must be equal to c2/4:ira. The 
assumed velocity field is chosen in such a way as to 
follow some "reasonable" convective pattern. It has 
been shown that indeed solutions of (1.15) exist for such 
reasonable convective flow patterns. It has, however, 
not been demonstrated whether these solutions are 
compatible with the remaining equations. 

2. DESCRIPTION OF THE EXPERIMENT 

Instead of solving the dynamo problem theoretically, 
it is suggested to design laboratory experiments, in 
which the dynamo effect—if it exists—should be 
exhibited as a consequence of the solutions of magneto-
fluid dynamics. 

By assuming the validity of similarity laws, which 
are explained in the next section, the conditions of 
stellar size dynamos can be obtained by rapid rotation 
attainable in ultracentrifuges. 

It is proposed to fill a spherical shell, which is part 
of the rotor of a centrifuge, with a liquid metal. Because 
of its high conductivity it is intended to use Na—K 
eutectic which is liquid at room temperature. 

According to the dynamo theory, strong Coriolis 
forces seem to be important. A rapid rotation will pro
vide the Coriolis force. A rapid rotation alone, however, 
is not sufficient; it will result in a rigid rotation of the 
fluid. For rigid rotation no dynamo effect can be ex
pected. In the earth and stars, the rigid rotation is upset 
by thermal convection, excited by internal heat sources. 
Such heat sources can be brought into the centrifuge, 
for instance in the form of U235, by exposing the whole 
apparatus to a strong neutron flux from a nuclear 
reactor. 

Heat transmission by radiation from external sources 
may be an alternative. The heat will flow through the 
rapidly rotating apparatus and must be removed by a 
coolant. If the centrifuge is of the turbine type, the 
heat may be removed by the gas jet which drives the 
turbine. The convection is directed antiparallel to the 
direction of the centrifugal force. The heat sources for 
this reason are most properly placed in an equatorial 
belt of the spherical rotor. 

One possible proposal of the apparatus is shown in 
Fig. 1. The spherical container is filled with liquid 

HEAT SOURCES 

TURBINE BLADES 

IOLLOW SHAFT 

HOLLOW SHAFT' 

(b) 

FIG. 1. Hydromagnetic dynamo driven by heat sources. 

FIG. 2. Supposed shape of the convection currents for the 
hydromagnetic dynamo drawn in Fig. 1. X heat sources, (a) 
Equatorial plane; (b) meridional plane; (c) spherical surface. 
The latitude difference between A and B is 90°. 

Na-K eutectic. The axis of the spherical container is a 
hollow shaft to which the container is rigidly attached. 
On the inner surface of the shaft are turbine blades. 
The centrifuge may be brought into a stable position by 
aerodynamic forces. The heat flows from the sources at 
the equatorial belt towards the shaft and is removed by 
the air jet which drives the centrifuge. 

One might expect a convection pattern quite similar 
to the pattern suggested by Bullard6 for the earth's 
core. Experimental work has been done by Hide9 on the 
thermal convection in rotating liquids, giving some 
valuable in information. 

We tried to draw a likely convection pattern in 
Fig. 2. To drive the fluid by thermal convection up to 
the desired velocities requires powerful heat sources. 
As already mentioned, an alternative to thermal 
convection, which will much more easily for the 
necessary rapid fluid motions, is viscous-shear- or 
pressure-induced fluid motion. For an alternative 

9 R. Hide, Phil. Trans. Roy. Soc. (London) A249, 441 (1957). 
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experiment the use of pressure forces is proposed. A 
pressure force can be exerted on a fluid, for instance, by 
moving pistons or propellers. We describe here one 
experimental device making use of pressure-induced 
fluid motion by propellers. To simulate the convective 
flow pattern drawn in Fig. 2, we attach to a central 
shaft penetrating the container two propellers, one in 
the "northern" and one in the "southern" hemisphere. 
The propeller in the "northern" hemisphere will drive 
the fluid towards the "north pole" and the propeller in 
the "southern" hemisphere will drive the fluid towards 
the "south pole." (See Fig. 3.) 

By viscous and Ohmic dissipation, heat is generated 
in the liquid conductor. This heat must be removed 
from the dynamo by a coolant, for instance most 
effectively by a hydrogen gas jet. The centrifuge may 
be driven by a shaft, which is connected with an electric 
motor. The shaft is in a vertical direction and at its 
lower end is rigidly connected with the centrifuge. A 
second shaft penetrates the centrifuge from below. In 
contrast to the other shaft it does not participate in 
the rotation. The two propellers are attached to this 
second shaft. The propellers are thus rotating relative to 
a reference system rotating with the centrifuge. Since 
the propellers drive the fluid along the shaft in opposite 
directions, the resulting flow lines should be quite similar 
to the thermal-convection pattern described in Fig. 2. 

3. SIMILARITY CONSIDERATIONS 

For the design of our experiment we must possess 
some order-of-magnitude estimates. We have to know 
in which regions—accessible to laboratory experiments 
—dynamo effects can be expected. If one presumes that 
stellar magnetic fields are explained by hydromagnetic 
dynamos, then under conditions accessible to labora
tory experiments and similar in the sense of hydromag
netic similarity, one should expect a hydromagnetic 
dynamo effect. 

The similarity laws of magnetofluid dynamics are 
based on dimensionless numbers quite analogous to the 
case for ordinary fluid dynamics. These dimensionless 
numbers can be obtained directly from the equations of 
magnetofluid dynamics by the substitution, 

d/dx=d/dy=d/dz= 1/L. (3.1) 

L is a "size" parameter equal to a characteristic length 
of the flow. First we consider Eq. (1.2). The dynamo 
is self-sustaining if the magnetic field is constant or 
increasing in time. 

With dH/dt>0, there follows from (1.2) the in
equality : 

cur lvXH> (C2/4TTC7)V2H. (3.2) 

Applying (3.1) to (3.2) results in 

^aLv/c2>\. (3.3) 

The dimensionless quantity on the left-hand side of 
(3.3) is the magnetic Reynolds number Rm. For the 

dynamo to become self-sustaining we, thus, have as a 
necessary condition 

* m « l . (3.4) 

I t follows from (3.3) and (3.4) that the fluid velocity 
necessary to excite a hydromagnetic dynamo must be 
at least of the order 

v>c2/4wL. (3.5) 

For example, in the sun o-^lO16, L = 7X1010 cm we need 
fl>10~7 cm/sec. In a laboratory experiment L is 
necessarily much smaller, and in our experiment of 
the order of magnitude of the radius of the centrifuge. 
This results in much higher fluid velocities if (3.5) is 
satisfied. 

We propose for our experiment a liquid metal. In 
magnetohydrodynamics liquid mercury has been used 
extensively.10-12 

With its higher electrical conductivity, which is 
advantageous because of relation (3.5), it is intended to 
use Na—K eutectic.13 

Inserting the conductivity of Na—K eutectic into 
(3.5) results in 

v>2.2X10*L~1 (cm/sec). (3.6) 

I t follows that for model dynamos with diameters 
ranging from 1 to 10 cm, minimum fluid velocities 
ranging from 20 to 2 m/sec are required. In the next 
two sections we calculate the fluid velocity for thermal 
convection and pressure induction. 

An order of magnitude estimate of the magnetic 
field strength can be obtained from the energy equation 
(1.9). Applying (3.1) to it and putting grad T=AT/L, 
where T is a characteristic temperature difference 
within the dynamo, we obtain 

AT v2 AT c2 H2 

pcpv—~pV hX 1 \-q. (3.7) 
L L2 L2 16TTV L2 

Solving (3.7) for H results in 

H~{±Trall2/c)[{pcvvL-\)AT-pvi)2-qDJl2. (3.8) 

TABLE I. Physical properties of Na—K eutectic 
(reference 13) and Hg. 

a 
X 
Cy 

V 
p 
a 

R/Rm 

N a - K 

3.3 X1016 sec"1 

0.26 w/cm°C 
0.21 cal/g°C 
2.8XIO-3 poise 
2.6 g/cm3 

2.76Xl0-4OC"1 

2.02 X106 

Hg 

0.94X10" sec""1 

0.104 w/cm°C 
0.035 cal/g°C 
1.5X10-2 poise 
13.5 g/cm3 

1.81 X10"4 °C-1 

6.8X106 

10 J. Hartmann and F. Lazarus, Kgl. Danske Videnksab. 
Selskab., Mat. Fys. Medd. 15, Nos. 6 and 7 (1947). 

11 A. B. Lehnert, Arkiv Fysik 5, 69 (1952). 
12 S. Lundquist, Phys. Rev. 83, 307 (1951). 
13 Liquid Metals Handbook N a - K Supplement USAEC 

Report TID 5277, and Bureau of Ships, 1955 (unpublished). 
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The meaning of this equation is that the dynamo has 
to work as a heat engine. 

We introduce into (3.8) the Reynolds number R=Lv/ 
v and the magnetic Reynolds number Rm=4:ir(TvL/c2 

which according to (3.4) can be put equal to one. 
The result is 

K X \ pv2 qL-]1!2 

If we neglect dissipation by thermal conduction, we 
get from (3.9) 

H~l4:ir(pcpAT-pv2/R-qL/v)J'2. (3.10) 

Equation (3.10) can be brought into a dimensionless 
form introducing the Alfven-Mach number, 

MA^HMAVP)1*. (3.11) 

With this definition, (3.10) can be written as 

MA^(cpAT/v2- l/R-qL/pv*)1?2. (3.12) 

If the dynamo is driven by heat sources—exciting 
thermal convection—and if it is under steady-state 
conditions, the total amount of heat supplied to the 
system must be equal to the total amount of heat 
removed from the system. The volume integral over q 
must, under these conditions, vanish. In Eq. (3.12) 
we, thus, put q=0 because it must be considered as an 
average. We then have 

MA^(cPAT/v2~ 1/iQ1'2. (3.13) 

To generate a magnetic field, MA2>0; this limits the 
temperature difference AT", 

AT>v2/cpR. (3.14) 

Taking for instance a fluid velocity of v^>\.QP cm/sec, 
cp~cv=l07 ergs/g°C it follows from (3.14) that 
A 7 > 1 0 - 7 °C. But for instance with AT^10~2 °C we 
get W - I O - 1 ; therefore, H~10* G. 

If the dynamo is driven by external pressure forces, 
q is different from zero because the heat generated by 
Ohmic and viscous dissipation must be removed from 
the system, q is a heat sink and the value of q is nega
tive. Under steady-state conditions, the amount of heat 
dissipated in the system must be equal to the amount of 
heat removed from the system. The heat flux of the 
dissipated energy pcpvAT must be equated to the 
negative value of the heat sink flux qL; thus, 

-qL~pcpvAT. (3.15) 

The result of this upon (3.12) is 

/ cpAT 1 \ 1 / 2 

MAM2 ) . (3.16) 
\ v2 RJ 

As an order-of-magnitude estimate this is the same 
result as (3.13). 

Apart from a factor §, AT is again limited by the 
inequality (3.14). If A 7 » 2 / 2 c p £ , then we have 
approximately 

MA
2^cpAT/v2 

and 
H2~±TrpcpAT. (3.17) 

Whether the fluid is turbulent or laminar is deter
mined by the Reynolds number in ordinary fluid 
dynamics. In magnetofluid dynamics it is determined 
by the condition,14 

R/M<2X102. (3.18) 

In (3.18), R is the Reynolds number, R=Lv/v, and M 
is the Hartmann number: 

M=(HL/c)(a/r)y!2. (3.19) 
We note that 

RM/R=^TT(TP/C2. (3.20) 

If the dynamo is self-sustaining, then R M = 1. Therefore, 
it follows from (3.20) that 

R/RM = R = c2/4Trav. (3.21) 

Equation (3.21) expresses the remarkable statement 
that the Reynolds number for a self-sustaining hydro-
magnetic dynamo depends only on the conductivity and 
the viscosity of the fluid. 

From (3.11), (3.19), and (3.21) we get 

R/M=R1I2/MA. (3.22) 

The magnetic energy cannot become larger than the 
kinetic fluid energy because the magnetic Reynolds 
number is much smaller than the ordinary Reynolds 
number. I t follows that M^<<Cl and, therefore, 

R/M>R112^ 103. (3.23) 

According to Murgatroyd's turbulence criterion this 
means the fluid is turbulent. 

4. THE THERMAL CONVECTION VELOCITY 

We first assume that the fluid is incompressible but 
that according to (1.12) p=p(T). Effects arising from 
a finite compressibility will be discussed. 

We can estimate the convection velocity then in the 
following way. Take a volume element of small size 
within the liquid. Displace the liquid in this volume 
element in a direction opposite to the centrifugal force 
g, viewed from a coordinate system at rest with the 
rotating centrifuge. If the thermal expansion of the 
liquid is positive and if the temperature gradient is 
directed parallel to g, then this fluid element will be 
accelerated in a direction antiparallel to g. 

We use the nomenclature of Fig. 4. The quantities 
of the fluid element are given an asterisk. The fluid 
element in its original position characterized by index 1 
is in thermal equilibrium with the surrounding fluid. 

14 W. Murgatroyd, Phil. Mat. 44, 1348 (1955). 
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F I G . 3 , H y d r o m a g n e t i c 
dynamo driven by pressure-
induced flow. The flow lines 
are presumably the same as in 
Fig. 2(b). 

PROPELLERS 

///////////// 

Thus, 
Pi*=Pi, r i * = T i . (4.1) 

If the fluid element is displaced by a distance dr as 
indicated in Fig. 4, it will possess a density and tempera
ture equal to p2*, 2Y\ 

Now if we neglect heat conductivity, then it is 
obvious that 

p2*=pi*=pi, T2*=T1*=T1. (4.2) 

We expand the density p2 in a Taylor series, 

P2=pi+(dp/dr)1dr. (4.3) 

Introducing the thermal expansion coefficient 

a=-(l/p)(dp/dt), (4.4) 

we can write for (4.3) 

P2=Pi+(dp/dT)1(dT/dr)1dr 
= Pi-aPl\vT\dr. (4.5) 

Putting dp==p2—pi and dropping the index 1, we obtain 
from (4.5) 

dp=-ap\vT\dr. (4.6) 

dp is the difference between the density of the environ
ment of the fluid element and the fluid element. If a 
is positive—which is mostly the case—then the displaced 
fluid element is lighter than its environment. I t will 
have a buoyancy of the magnitude 

b = dpg, 

= ap\vT\gdr. (4.7) 

If the fluid is turbulent, the mean displacement of the 
fluid element is given by the turbulent mixing length I, 
which experimentally is known to be always of the same 
order of magnitude as the size of the boundary; thus, 
we may put 

l~L. (4.8) 

The buoyancy acts then from dr=0 to dr~L. 

The average value of it is given by 

6=|aP|vr|L. (4.9) 

To calculate from this the convection velocity, we 
equate the change in kinetic energy of the fluid element 
|pz>2 with the gain in potential energy 5 L = J a p | vT |L 2 ; 
the result is 

v=L(a\VT\g)W. (4.10) 

Introducing the temperature difference ATo^L\VT\ 
into (4.10) results in 

v^igLaAT)1'2. (4.H) 

The value of the centrifugal force g in the centrifuge is 
of the order 

g~V*/L. (4.12) 

V is the maximum tangential velocity of the centrifuge. 
By substituting this into (4.11) we get finally 

and 
v~V(aATyi2 

ATc~(l/a)(v/V)2, 

(4.13a) 

(4.13b) 

Take for instance z>^103 cm/sec, F = 1 0 5 cm/sec, and 
a - 4 0 - 4 ; it follows that AT— 1°C. 

To see how these results change under a finite 
compressibility, consider Fig. 5. The calculation is 
quite analogous to the corresponding astrophysical 
calculation for an ideal gas.15 In contrast to the incom
pressible case, the fluid element now will expand if 
displaced by dr. 

I t is then obvious that 

Pi* = Pi, p2* = pl- (4.14) 

We expand the density in the fluid and in the fluid 
element at position 2 into a Taylor series: 

p2* = Pi*+ (dPl*/dr)dr=Pl+ (dp*/dr)dr, 

P2=Pi+ (dPl/dr)dr=Pl+ (dp/dr)dr. (4.15) 

>2* 

VT 

FIG. 4. To the calculation of thermal convection in 
an incompressible fluid. 

15 For instance: M. Schwarzchild, Structure and Evolution of the 
Stars (Princeton University Press, Princeton, New Jersey, 1958) 
p. 44. 
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Further, we write 

d(-) = (—\dT+(-—J dp = -(adT-Kdp). (4.23) 

Eliminating dT from (4.22) and (4.23) leads to 

fcvp a\ / 1 \ CVK 
ds= ( — ± - )d( - )+—dp. (4.24) 

\aT K/ \p/ aT 

We make use of the well-known thermodynamic 
formula 

VT 

FIG. 5. To the calculation of thermal convection 
in a compressible fluid. 

As in the previous incompressible case, heat conduc
tion is neglected. The fluid element can, therefore, 
undergo an adiabatic change only. The first of the two 
Eqs. (4.15) gives a change in density which we shall 
call adiabatic density change: 

(4.25) 

(4.26) 

(4.27) 

With the help of (4.27), Eq. (4.24) can be simplified. 
The result is 

ds=— pcpd(-)+cvKdp . (4.28) 
aTL \p/ J 

cp-cv= T{dp/dT)p{dp'1/dT)t 

or, using (4.18), 

cp—cv—Tpl3a/p. 

Combining this with (4.19) leads to 

OL/K=P(CP—CV)/OLT. 

( d p ) a d = P 2 * - p i * = (dp/dr)addr. (4.16) If the fluid element undergoes an adiabatic change, 
then ds = 0. From this it follows that 

The second Eq. (4.15) is the change in the density of 
the environment 

dp=p2—pi 

= (dp/dr)dr. (4.17) 

The equation of state is given by the three coefficients 
of thermal expansion a, compressibility K, and pressure 
coefficient (3; 

a=-(l/p)(dp/dT)p, 

K=(l/p)(dp/dp)T, (4.18) 

(3=(l/p)(dp/dT)p. 

Between these three coefficients there exists the well-
known relation 

pP = a/ic. (4.19) 

The second law of thermodynamics is written in the 
form 

ds= (l/T)[du+pd(l/p)~]. (4-2°) 

In (4.20), u is the internal energy. By well-known 
thermodynamic relations this can be written as 

Therefore, 
(dp)ad=:PK(CV/'cp)dp. 

fdp\ cv dp 

f ad 

fdp\ cv dp 
( — J =Kp . 
W/ad Cv df 

(4.29) 

(4.30) 

To calculate the density change in the environment of 
the fluid element we use Eq. (4.23). From this equation 
it follows that 

dp dT dp 
— = —ap—+K/>—. 
dr dr dr 

(4.31) 

ds=( 
dT /dp 

T \dT, M:> 
or, with the help of (4.18), 

dT a 
ds=cv 1—d\ 

T K \p 0-

(4.21) 

(4.22) 

The excess in the density change causing a buoyancy 
is given by the difference 

dp /dp\ rdT K/ l\dp~] 
dp=—dr-[ — ) dr=pa\ ( 1 )— . (4.32) 

dr \dr/ad Ldr a\ y/ drJ 

In (4.32), 7 is the ratio cp/cv. 
I t can be easily verified, by eliminating dp from 

(4.22) and (4.23) and using (4.27), that the second 
term in the bracket of (4.32) is the adiabatic tempera
ture gradient. We, thus, have 

Udp 

y/ dr 

/dl\ K/ \\dp 
(—) — ( I - - ) - . (4.33) 
\dr/ad a\ yl dr 

The influence of the compressibility on the value for 
the convection velocity can be included by substituting 
everywhere for the temperature gradient the excess of 
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the actual temperature gradient over the adiabatic 
temperature gradient. 

With the help of (4.27) we can write instead of (4.33) 

fdT\ aTdp 

(T) =-J- (4-34) 
\ dr /ad pcp dr 

We estimate the magnitude of this adiabatic tempera
ture gradient. We put dp/dr^pV2/L, where V is the 
tangential velocity and L the size of the centrifuge. 
I t follows that 

(AT)ad~aTV2/cp~aTV2/cv. (4.35) 

Taking the a value for N a - K eutectic at T ~ 4 X 102 °C 
and assuming a value for V of the order of 105 cm/sec, 
we obtain from (4.35) a value 

(Ar) a d ~0.1°C. 

The adiabatic temperature gradient is roughly one order 
of magnitude smaller than the actual temperature 
difference of the order A r ^ l ° C calculated above. 
Effects caused by compressibility can be assumed to 
be small as long as 

Ar>0 .1°C . 

The temperature difference must be sustained by a 
heat transfer to some coolant, in our case to the jet 
which drives the turbine of the centrifuge. If the fluid 
is incompressible, the heat flux Q transmitted to the 
jet is approximately given by 

Q~pcpvAT. (4.36) 

If the fluid is compressible, one has to take instead of 
AT in (4.37) the excess of the actual temperature 
gradient over the adiabatic temperature gradient: 

Q~pcpv(AT-ATad). (4.37) 

Making use of (4.35) we obtain 

/ aV2 \ 
Q~pcpvAT[ 1 J. (4.38) 

\ cvAT/TJ 

In the calculation of the convection velocity we have 
neglected the Coriolis forces. Chandrasekhar16 has 
shown that Coroilis forces, in general, inhibit convection 
except for the case in which the vector of angular 
rotation is perpendicular to g. In our situation g is the 
centrifugal acceleration and, therefore, perpendicular 
to the vector of rotation. 

5. ESTIMATE OF A PROPELLER-INDUCED 
FLUID MOTION 

We consider the fluid in a coordinate system at rest 
relative to the rotating container of the centrifuge. 
The propellers are arranged according to Fig. 3. 

16 S. Chandrasekhar, Proc. Roy. Soc. A217, 306 (1953). 

The fluid moves toward the propeller blades with an 
average velocity v. The propeller accelerates a fluid 
element dm to a final velocity Co. Co is a constant 
depending on the construction of the propeller blades. 
The change in kinetic energy per unit time of the fluid 
passing the propeller is thus given by 

dE 1 dm 
—=-(co2-v2)—. (5.1) 
dt 2 dt 

The fluid is ejected by the propeller in form of a jet 
with a radius r. This jet radius r is apparently the 
propeller radius. I t is, therefore, evident that 

dm/dt=Copirr2. (5.2) 

Substituting (5.2) into (5.1) results in 

dE/dt = iTrr2pc0(co2-v2). (5.3) 

The viscous and Ohmic energy losses are of the order of 
magnitude 

/47H7 c2 \ ATTVLV2/ C2 H2\ 
P^L(—v2+ H2) = ( 1 + ]. (5.4) 

\ 3 12™ / 3 \ (4TT)V77 v21 

Making use of (3.11) and of (3.21) leads to 

AirrjLv2 

P (1+RMA2). (5.5) 
3 

Equating (5.5) to (5.3) and solving for the dimensionless 
ratio V2/CQ2 leads to 

1 
v2/c0

2~ . (5.6) 
l+(8vL/3r2co)(l+RMA

2) 

Let the centrifuge possess a tangential velocity, V. 
The propeller, which does not participate in the 
rotation of the centrifuge, has relative to the centrifuge 
a speed CQ of the order of magnitude 

c0~(r/L)V. (5.7) 

The flow is turbulent; in a turbulent flow the viscous 
dissipation is increased. The increase of the viscous 
dissipation in a turbulent flow through a pipe has been 
studied experimentally and it has been found that the 
friction is increased in comparison to a laminar flow by 
the Blasius factor 

F = 5 X 1 0 ~ 3 ^ 4 - 1 0 2 ; ( £~10 6 ) . (5.8) 

We assume that in our situation the viscous friction is 
increased by the same factor. We introduce a "con
tainer" Reynolds number Rc—LV/v and rewrite (5.6), 
with the result 

r 1 
vss—V- . (5.9) 

L [ 1 + 3 X 1 0 2 ( L A ) 3 ( 1 / ^ C ) ( 1 + ^ M A 2 ) ] 1 / 2 



D Y N A M O T H E O R Y O F E A R T H A N D S T E L L A R M A G N E T I S M 37 

Assume for instance that 

r/Lc-lO-1; 7 = 3.104 cm/sec, i?~106; MA
2~ 10"1. 

It follows from (5.9) that 

z;~103 cm/sec. 

6. THE WORKING CONDITIONS FOR THE 
MODEL DYNAMO 

With the results of Sees. 3, 4, and S the working 
conditions of the model dynamo can be determined. 
We put the conditions together. 

We consider first the model dynamo "driven" by 
heat sources. The required velocity is obtained from 
equation (3.5). The temperature difference is obtained 
by combining Eq. (3.5) with (4.13b); the result is 

AT> - . (6.1) 

16w2a2aL2V2 

For the values of the Na—K eutectic, 

v> 2.2X ID8/!, cm/sec, (6.2) 

AT>1.75X1010/W2 °C. (6.3) 
With help of (6.2) and (6.3), the total heat flux accord
ing to (4.37) (putting always Cp~c„) is then easily 
calculated: 

Q~pcvvAT. (6.4) 

For the Na—K eutectic, 

<2^5X WAT/L W/cm2~8.7X 1013/W2 W/cm2 (6.5) 

The heat-source density q is according to (3.15) con

nected with Q by q^qL; thus, 

2~8.7X1013/W2 W/cm3. (6.6) 

The magnetic field strength follows from (3.17). Insert
ing the value (6.3), we have 

H~2.2X10»/LV G. (6.7) 

As an example let us take L=10 cm, F=104 cm/sec. 
It follows tf-dO2 cm/sec, AT~1°CQ~.10* W/cm2, 
q~102 W/cm3, #~10 4 G. 

For the propeller-driven dynamo, Eq. (6.2) holds 
unchanged. The required tangential velocity of the 
centrifuge can be calculated with (5.9) if v is known: 

F«^(LA)Cl+3X102(LA)3(l/^c)(l+i?M/)]1/2 . (6.8) 

Solving for AT from (3.17), we have 

Ar~3.4Xl0- 8 # 2 O C. (6.9) 

In the pressure-driven dynamo there is no restriction 
on AT such as for the convection-driven dynamo 
expressed by (6.3). From (6.9) we obtain a AT1 if a 
magnetic field still measurable is inserted into the 
right-hand side of (6.9). For the Alfven-Mach number 
(3.11) we obtain, after introducing the expression 
(6.2) for v, 

MA^0.8X10~AHL. (6.10) 

From Eq. (6.4) which holds unchanged, from (6.2) 
and from (6.9) we obtain for the heat flux Q 

Q~ 1.7X 10-4 H2/L W/cm2. 

Take, for example, Z,= 10 cm, L/r= 10, and H=l G. 
It follows that z>~102 cm/sec, MA^10~\ F=103 

cm/sec, AT-3X10-8 °C, and Q-10~5 W/cm2. 


